FAQ#
How can I run Keras on GPU#
Kashgari will use GPU by default if available, but you need to setup the Tensorflow GPU environment first. You can check gpu status using the code below:
import tensorflow as tf
print(tf.test.is_gpu_available())
Here is the official document of TensorFlow-GPU
How to save and resume training with ModelCheckpoint callback#
You can use tf.keras.callbacks.ModelCheckpoint for saving model during training.
from tensorflow.python.keras.callbacks import ModelCheckpoint
filepath = "saved-model-{epoch:02d}-{acc:.2f}.hdf5"
checkpoint_callback = ModelCheckpoint(filepath,
monitor = 'acc',
verbose = 1)
model = CNN_GRU_Model()
model.fit(train_x,
train_y,
valid_x,
valid_y,
callbacks=[checkpoint_callback])
ModelCheckpoint will save models struct and weights to target file, but we need token dict and label dict to fully restore the model, so we have to save model using model.save()
function.
So, the full solution will be like this.
from tensorflow.python.keras.callbacks import ModelCheckpoint
filepath = "saved-model-{epoch:02d}-{acc:.2f}.hdf5"
checkpoint_callback = ModelCheckpoint(filepath,
monitor = 'acc',
verbose = 1)
model = CNN_GRU_Model()
# This function will build token dict, label dict and model struct.
model.build_model(train_x, train_y, valid_x, valid_y)
# Save full model info and initial weights to the full_model folder.
model.save('full_model')
# Start Training
model.fit(train_x,
train_y,
valid_x,
valid_y,
callbacks=[checkpoint_callback])
# Load Model
from kashgari.utils import load_model
# We only need model struct and dicts
new_model = load_model('full_model', load_weights=False)
# Load weights from ModelCheckpoint
new_model.tf_model.load_weights('saved-model-05-0.96.hdf5')
# Resume Training
# Only need to set {'initial_epoch': 5} when you wish to start new epoch from 6
# Otherwise epoch will start from 1
model.fit(train_x,
train_y,
valid_x,
valid_y,
callbacks=[checkpoint_callback],
epochs=10,
fit_kwargs={'initial_epoch': 5})